Fast Segment Anything 🏫 643 stars

Xu Zhao ^{1,3} Wenchao Ding ^{1,2} Yongqi An ^{1,2} Yinglong Du ^{1,2} Tao Yu ^{1,2} Min Li ^{1,2} Ming Tang ^{1,2} Jinqiao Wang ^{1,2,3,4} Institute of Automation, Chinese Academy of Sciences, Beijing, China¹ School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China² Objecteye Inc., Beijing, China³ Wuhan AI Research, Wuhan, China⁴

Motivation

The substantial computational resource requirements associated with ViT models make SAM's practical applications are still challenging

RTX 3090	1 1	Ru	unning Spe	ed under l	Different Point	Prompt Number	rs (ms)
method	params	1	10	100	E(16×16)	E(32×32*)	E(64×64)
SAM-H [20]	0.6G	446	<u>46</u> 4	627	852	2099	6972
SAM-B [20]	136M	110	125	230	432	1383	5417
SAM-D [20]	150141	110	125	250	452	1565	5417
		2 fps			< 1 fps	0.5 fps	

Pipeline of SAM

Provide the prompt + Segment the target

Pipeline of Fast-SAM

All-instance segmentation + Prompt-guided selection

YOLOv8-seg

Detect-Branch

Detect \rightarrow W × H × [x, y, h, w, cls]

Mask Coeff. \rightarrow W × H × 32

Detect-Branch

[W, H, 320] → [2W, 2H, 32]

Detect-Branch

[N, 32] @ [32, W, H] = [N, W, H]

Prompt-guided Selection

merging

Compute IoU

Compute similarity

Experiments -using only 2% of the SA-1B

- Run-time Efficiency
- low-level: edge detection
- mid-level: object proposal generation
- high-level: instance segmentation
- high-level: segmenting objects with free-form text input
- Real-world Applications

Run-time Efficiency

	Í I	Running Speed under Different Point Prompt Numbers (ms)						
method	params	1	10	100	E(16×16)	E(32×32*)	E(64×64)	
SAM-H [20]	0.6G	446	464	627	852	2099	6972	
SAM-B [20]	136M	110	125	230	432	1383	5417	
FastSAM (Ours)	68M				40			

50x faster than SAM (32 × 32) 170x faster than SAM (64 × 64)

Zero-Shot Edge Detection

method	year	ODS	OIS	AP	R50
HED [37]	2015	.788	.808	.840	.923
EDETR [30]	2022	.840	.858	.896	.930
zero-shot transfer	methods:				
Sobel filter	1968	.539		-	-
Canny [6]	1986	.600	.640	.580	-
Felz-Hutt [9]	2004	.610	.640	.560	-
SAM [19]	2023	.768	.786	.794	.928
FastSAM	2023	.750	.790	.793	.903

object proposal generation

I	AR10	AR100	AR1000	AUC
EdgeBoxes [38]	7.4	17.8	33.8	13.9
Geodesic [21]	4.0	18.0	35.9	12.6
Sel.Search [34]	5.2	16.3	35.7	12.6
MCG [2]	10.1	24.6	39.8	18.0
DeepMask [29]	13.9	28.6	43.1	21.7
OLN-Box [17]	27.7	46.1	55.7	34.3
SAM-H E64	15.5	45.6	67.7	32.1
SAM-H E32	18.5	49.5	62.5	33.7
SAM-B E32	11.4	39.6	59.1	27.3
FastSAM (Ours)	15.7	47.3	63.7	32.2

mask proposal generation

	mask AR@1000							
method	all	small	med.	large	freq.	com.	rare	
results reported in the SA	AM pap	per:						
ViTDet-H [23]	63.0	51.7	80.8	87.0	63.1	63.3	58.3	
SAM [20] – single out.	54.9	42.8	76.7	74.4	54.7	59.8	62.0	
SAM [20]	59.3	45.5	81.6	86.9	59.1	63.9	65.8	
results after our replicati	ion:							
ViTDet-H [23]	59.9	48.3	78.1	84.8	-	-	-	
SAM-H E64	54.2	39.6	77.9	83.9				
SAM-HE32	51.8	35.2	78.7	85.2	-	-	-	
SAM-B E32	45.8	31.1	70.5	73.6	<u>.</u>	<u>u</u> :	_	
FastSAM (Ours)	49.7	35.6	72.7	77.6	-	-		

We think this is because the confidence score is defined as the b-box score of YOLOv8, which is not strongly related to the mask quality

Zero-Shot Instance Segmentation

	COCO [26]			LVIS v1 [13]				
method	AP	AP ^S	AP ^M	APL	AP	AP ^S	APM	APL
ViTDet-H [23]	51.0	32.0	54.3	68.9	46.6	35.0	58.0	66.3
zero-shot transf	fer met	hods (s	egment	tation n	nodule	only):		
SAM	46.5	30.8	51.0	61.7	44.7	32.5	57.6	65.5
FastSAM	37.9	23.9	<mark>43.</mark> 4	50.0	34.5	24.6	46.2	50.8

The masks of some of the tiny-sized objects tend to be near the square. Besides, the mask of large objects may have some artifacts on the border of the bounding boxes

Zero-Shot Object Localization with Text Prompts

Image

Text prompt: "The yellow dog"

Text prompt: "The black dog"

the running speed of the text-to-mask segmentation is not satisfying, since each mask region is required to be fed into the CLIP feature extractor

Anomaly Detection

Salient Object Segmentation

original image

SAM-point

SAM-box

SAM-everything

ground truth

FastSAM-point

FastSAM-box

FastSAM-everything

Building Extracting

ground truth

FastSAM-point

FastSAM-box

FastSAM-everything

Motivation

• The substantial computational resource requirements associated with ViT models make SAM's practical applications are still challenging

• Break the limitations of the ViT model provided by SAM

Limitations of SAM ViT-Huge

- Heavy computation
- Promptable model
- Portability

Promptable model

-SAM segments nothing without prompt

- A model that generates prompt + ViT-Huge
- Find a suitable prompt for all downstream tasks

SAM-RBox

Grounded-Segment-Anything

combining Grounding DINO and Segment Anything

Text Prompt: "Horse. Clouds. Grasses. Sky. Hill."

Grounding DINO: Detect Everything Grounded-SAM: Detect and Segment Everything

Matte Anything

What does SAM bring us ?

• A ViT-Huge model

• SA1B dataset of 1 Billion masks

• A data engine

A SURVEY ON SEGMENT ANYTHING MODEL (SAM): VISION FOUNDATION MODEL MEETS PROMPT ENGINEERING

Chaoning Zhang*	Fachrina Dewi Puspitasari	Shen	Chenghao Li	
Kyung Hee University	KAIST	Beijing Institu	KAIST	
Yu Qiao	Taegoo Kang	Xinru Sh	an Chens	huang Zhang
Kyung Hee University	Kyung Hee University	Microsoft S	TCA	KAIST
Caiyan Qin	Francois Ran	neau	Lik-Ha	ng Lee
Harbin Institute of Technolo	gy State University of New	York at Korea	Hong Kong Polyt	echnic University
Su	ng-Ho Bae	Choo	ng Seon Hong	
Kyung	Hee University	Kyung	Hee University	

Based on the task of promptable segmentation, the segment anything model (SAM) is the first vision foundation model that mimics the human eye to understand the world and its emergence has transformed the computer vision community.

Our work conducts the first yet comprehensive survey on SAM. We hope our survey helps readers interested in SAM for performing their research.